Attackers can make it impossible to dial 911

 

Connecting state and local government leaders

If we are to prevent denial of service attacks on 911 systems, we must understand where the weaknesses lie, both in technology and policy.

This article was originally published in The Conversation.

More Info

Is an attack on emergency services just one call away?

A recent study revealed how easy it would be for bad actors to overload and disable infrastructure for the 911 emergency services in the United States. Read more.

Answering the call for solutions to 911 TDoS attacks

Experts are still dialing for dollars when it comes to ideas for how to mitigate the risk, or even the impact, of a potential telephony denial-of-service attack on the 911 emergency services system. Read more.

DHS working to protect emergency call centers against denial-of-service attacks

With more government services facing potential cyberthreats, the Department of Homeland Security is working to lower the risk and impact of potential telephone system-based attacks on 911 call centers. Read more.

SecureLogix aims to stop TDoS attacks

Simple and inexpensive telephony denial-of-service attacks are increasingly targeting government phone systems. Read more.

It’s not often that any one of us needs to dial 911, but we know how important it is for it to work when one needs it. It is critical that 911 services always be available -- both for the practicality of responding to emergencies and to give people peace of mind. But a new type of attack has emerged that can knock out 911 access -- our research explains how these attacks occur as a result of the system’s vulnerabilities. We show these attacks can create extremely serious repercussions for public safety.

In recent years, people have become more aware of a type of cyberattack called “denial-of-service,” in which websites are flooded with traffic -- often generated by many computers hijacked by a hacker and acting in concert with each other. This happens all the time and has affected traffic to financial institutionsentertainment companiesgovernment agencies and even key internet routing services.

A similar attack is possible on 911 call centers. In October, what appears to be the first such attack launched from a smartphone happened in Arizona. An 18-year-old hacker was arrested on charges that he conducted a telephone denial-of-service attack on a local 911 service. If we are to prevent this from happening in more places, we need to understand how 911 systems work, and where the weaknesses lie, both in technology and policy.

Understanding denial of service

Computer networks have capacity limits -- they can handle only so much traffic, so many connections, at one time. If they get overloaded, new connections can’t get through. The same thing happens with phone lines -- which are mostly computer network connections anyway.

So if an attacker can manage to tie up all the available connections with malicious traffic, no legitimate information -- like regular people browsing a website, or calling 911 in a real emergency -- can make it through.

This type of attack is most often done by spreading malware to a great many computers, infecting them so that they can be controlled remotely. Smartphones, which are after all just very small computers, can also be hijacked in this way. Then the attacker can tell them to inundate a particular site or phone number with traffic, effectively taking it offline.

Many internet companies have taken significant steps to guard against this sort of attack online. For example, Google Shield is a service that protect news sites from attacks by using Google’s massive network of internet servers to filter out attacking traffic while allowing through only legitimate connections. Phone companies, however, have not taken similar action.

Addressing the 911 telephone system

Before 1968, American emergency services had local phone numbers. People had to dial specific numbers to reach the fire, police or ambulance services -- or could dial “0” for the operator, who could connect them. But that was inconvenient, and dangerous -- people couldn’t remember the right number or didn’t know it because they were just visiting the area.

The 911 system was created to serve as a more universal and effective system. As it has developed over the years, a 911 caller is connected with a specialized call center -- called a public safety answering point -- that is responsible for getting information from the caller and dispatching the appropriate emergency services.

These call centers are located in communities across the country, and each provides service to specific geographic regions. Some serve individual cities, while others serve wider areas, such as counties. When telephone customers dial 911 on their landlines or mobile phones, the telephone companies’ systems make the connection to the appropriate call center.

To better understand how denial-of-service attacks could affect 911 call systems, we created a detailed computer simulation of North Carolina’s 911 infrastructure and a general simulation of the entire U.S. emergency-call system.

Investigating the impact of an attack

After we set up our simulation, we attacked it to find out how vulnerable it is. We found that it was possible to significantly reduce the availability of 911 service with only 6,000 infected mobile phones -- just 0.0006 percent of the state’s population.

Using only that relatively small number of phones, it is possbile to effectively block 911 calls from 20 percent of North Carolina landline callers and half of mobile customers. In our simulation, even people who called back four or five times would not be able to reach a 911 operator to get help.

Nationally, a similar percentage, representing just 200,000 hijacked smartphones, would have a similar effect. But this is, in a certain sense, an optimistic finding. Trey Forgety, the director of government affairs for the National Emergency Number Association, responded to our findings in the Washington Post, saying, “We actually believe that the vulnerability is in fact worse than [the researchers] have calculated.”

Policy makes the threat worse

These sorts of attacks could, potentially, be made less effective if malicious calls were identified and blocked at the moment they were placed. Mobile phones have two different kinds of identifying information. The IMSI (International Mobile Subscriber Identity) is the phone number a person must call to reach that phone. The IMEI (International Mobile Station Equipment Identity) is used to track the specific physical device on the network.

A defense system could be set up to identify 911 calls coming from a particular phone that has made more than a certain number of 911 calls in a given period of time -- say more than 10 calls in the last two minutes.

This raises ethical problems -- what if there is a real and ongoing emergency and someone keeps losing phone reception while talking to a dispatcher? If they called back too many times, would their cries for help be blocked? In any case, attackers who take over many phones could circumvent this sort of defense by telling their hijacked phones to call less frequently -- and by having more individual phones make the calls.

But federal rules to ensure access to emergency services mean this issue might be moot anyway. A 1996 Federal Communications Commission order requires mobile phone companies to forward all 911 calls directly to emergency dispatchers. Cellphone companies are not allowed to check whether the phone the call is coming from has paid to have an active account in service. They cannot even check whether the phone has a SIM card in place. The FCC rule is simple: If anyone dials 911 on a mobile phone, they must be connected to an emergency call center.

The rule makes sense from a public safety perspective: If someone is having (or witnessing) a life-threatening emergency, they shouldn’t be barred from seeking help just because they didn’t pay their cellphone bill, or don’t happen to have an active account.

But the rule opens a vulnerability in the system, which attackers can exploit. A sophisticated attacker could infect a phone in a way that makes it dial 911 but report it does not have a SIM card. This “anonymized” phone reports no identity, no phone number and no information about who owns it. Neither the phone company nor the 911 call center could block this call without possibly blocking a legitimate call for help.

The countermeasures that exist, or are possible, today are difficult and highly flawed. Many of them involve blocking certain devices from calling 911, which carries the risk of preventing a legitimate call for help. But they indicate areas where further inquiry -- and collaboration between researchers, telecommunications companies, regulators and emergency personnel -- could yield useful breakthroughs.

For example, cellphones might be required to run monitoring software to block themselves from making fraudulent 911 calls. Or 911 systems could examine identifying information of incoming calls and prioritize those made from phones that are not trying to mask themselves. We must find ways to safeguard the 911 system, which protects us all.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.